Efficient Online Bootstrapping for Large Scale Learning
نویسندگان
چکیده
Bootstrapping is a useful technique for estimating the uncertainty of a predictor, for example, confidence intervals for prediction. It is typically used on small to moderate sized datasets, due to its high computation cost. This work describes a highly scalable online bootstrapping strategy, implemented inside Vowpal Wabbit, that is several times faster than traditional strategies. Our experiments indicate that, in addition to providing a black box-like method for estimating uncertainty, our implementation of online bootstrapping may also help to train models with better prediction performance due to model averaging.
منابع مشابه
Large Scale Online Kernel Learning
In this paper, we present a new framework for large scale online kernel learning, making kernel methods efficient and scalable for large-scale online learning applications. Unlike the regular budget online kernel learning scheme that usually uses some budget maintenance strategies to bound the number of support vectors, our framework explores a completely different approach of kernel functional...
متن کاملLarge Scale Online Kernel Classification
In this work, we present a new framework for large scale online kernel classification, making kernel methods efficient and scalable for large-scale online learning tasks. Unlike the regular budget kernel online learning scheme that usually uses different strategies to bound the number of support vectors, our framework explores a functional approximation approach to approximating a kernel functi...
متن کاملM-Statistic for Kernel Change-Point Detection
Detecting the emergence of an abrupt change-point is a classic problem in statistics and machine learning. Kernel-based nonparametric statistics have been proposed for this task which make fewer assumptions on the distributions than traditional parametric approach. However, none of the existing kernel statistics has provided a computationally efficient way to characterize the extremal behavior ...
متن کاملRecognizing Explicit and Implicit Hate Speech Using a Weakly Supervised Two-path Bootstrapping Approach
In the wake of a polarizing election, social media is laden with hateful content. To address various limitations of supervised hate speech classification methods including corpus bias and huge cost of annotation, we propose a weakly supervised twopath bootstrapping approach for an online hate speech detection model leveraging large-scale unlabeled data. This system significantly outperforms hat...
متن کاملLIBOL: a library for online learning algorithms
LIBOL is an open-source library for large-scale online learning, which consists of a large family of efficient and scalable state-of-the-art online learning algorithms for large-scale online classification tasks. We have offered easy-to-use command-line tools and examples for users and developers, and also have made comprehensive documents available for both beginners and advanced users. LIBOL ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1312.5021 شماره
صفحات -
تاریخ انتشار 2013